Chapter 4--Kinematics

Chapter 4

ELEMENTARY DEFINITIONS
and
THE KINEMATIC EQUATIONS

There are some very sophisticated ways to approach the analysis of
problems, and there are some very simple approaches, also. The kinematic
equations represent one of those simple ways. I personally don't like them very
much because there is no real technique to them--you just look to see what you
are given in a problem, look to see what is asked for, pick the kinematic
equation that includes what you are given and what you want, plug in numbers
and chug out an answer. In other words, although it is possible to make
kinematic type problems hard, it's nevertheless kind of like idiot physics.
Nevertheless, you need to know how to analyze situation using kinematics, so
that is what you are about to do. We will start, though, with some definitions.

A.) Speed:

1.) Average speed (saV g): A scalar quantity that denotes the average

distance traversed per unit time (i.e., the average rate at which ground is cov-
ered). With units of meters per second, it is mathematically defined as:

Ad
0 = ar

where Ad is the total distance traveled during a time interval At.
a.) Example: A run-

ning woman covers 100
. 30 meters
meters in 15 seconds, in

then changes direction 10 seconds
and hops 30 meters in 10
seconds (see Figure 4.1). 100 meters in 15 seconds
What is her average speed
jon?
for the overall motion? FIGURE 4.1
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s = Ad/At

avg
= (130 m) / (25 sec)
=5.2 m/s.

Note 1: What this average gives you is the SINGLE CONSTANT SPEED
that will move the woman over the required distance (130 meters) in the
required time (25 seconds). It does not tell you how fast she is actually
traveling at any given instant. She could run the first 80 meters in 10 seconds,
then stand panting for 2 seconds, then do the last 20 meters of the first leg in
the remaining 3 seconds. Average speed tells you nothing about the actual
motion; all it tells you is the single speed that would be required to go the
distance at a uniform run in the allocated time.

Note 2: Speed is not a quantity physicists use very much. It is being
presented here as a preamble to more interesting and useful variables to come.

2.) Instantaneous speed (s): A measure of an object's distance traveled
per unit time (i.e., its rate of travel), measured at a particular point in time.

a.) Example: The running woman in Example 1a is found to be
moving with a speed of 8 m/s as she passes the 15 meter mark, three
tenths of a second into the race. Her instantaneous speed at the 15 meter
mark 1s, therefore, 8 m/s.

b.) Mathematically, instantaneous speed (referred to simply as speed
from here on) is defined as:

s =limit,,_, (Ad/.)

Note: Translation: At a particular point in time, an object's instanta-
neous speed 1s equal to its average speed calculated over a very tiny time interval
(i.e., as At approaches zero). Although this is technically a Calculus problem
(we are actually looking at the time derivative of the distance function), it will
not be written in that form. Again, the idea of speed i1s useful as a concept only.
We will rarely use it as a mathematical entity.

B.) Velocity—-Magnitude and Direction:

1.) Average velocity (VaV g): A vector quantity that denotes the average

displacement (1.e., the net resultant change of position) per unit time over some
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large time interval. With units of meters per second (normally written as m/s), it
1s mathematically defined as:

Ar
Yo =5t

where Ar is the NET DISPLACEMENT of the object during a time interval A¢.

The direction of Uang 1s the same as the direction of Ar, (i.e., that of the net dis-

placement).

a.) Example: A

net displacement:

woman covers 100 meters ftor 95
. aiter Seco,
n 15 seconds, then /m‘s)
. . I rl=104.4 meters 30 meters
changes direction and in

10 seconds

hops 30 meters in 10 sec-
onds (see Figure 4.2).
What is her average 100 meters in 15 seconds
velocity for the overall
motion?

The magnitude:

FIGURE 4.2

Ar
At
= (104.4 m)/(25 sec)
=4.176 m/s.

\'/

avg

The direction (using trig. and the sketch):

¢ = tan" [(30 m)/(100 m)]
=16.7°.

As a vector:

av,

Vave = 4.176 m/s £ 16.7°.

Note 1: This average value gives you the constant number of meters-per-
second, moving DIRECTLY from the initial to the final position, required to effect
the net displacement in the allotted time. As was the case with average speed, it
does not reflect the actual velocity of the woman at any particular instant.
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Note 2: Average velocity is not a quantity physicists use very much, but
instantaneous velocity 1s!

2.) Instantaneous velocity (v): A measure of an object's displacement per
unit time as measured at a particular point in time.

a.) Mathematically, instantaneous velocity (referred to as velocity
from here on) is defined as:

v =limit,_, (A7)

where the direction of Aris the direction of motion at a given instant.
As this is the definition of a derivative, we can write the relationship as:

dr
V=—.
dt

Note: Calculus is not required for this course. Nevertheless, most of the
students taking this course are either in a Calculus course or are at least
distantly aware of the basics of the discipline. You will not be expected to solve
test problems involving Calculus, but there will be instances when it is alluded
to. This is one of those instances.

Note: THIS IS IMPORTANT. The sign of the velocity tells you the di-
rection of motion of the body at a particular point in time. That is, if the veloc-
1ty 1s -8j m/s, the body is moving in the -y direction.

3.) Velocity and the

POSITION vs. TIME Graph: position
(=)
a.) Consider the stlgggeﬁtﬂ;f time
POSITION vs. TIME t, is equal to
. . dx/dt (i.e., the
graph shown in Figure velocity at t,)

4.3 to the right. The slope rise is "dx"

of the tangent to the curve /
at a time t; gives us the
change of position with S~ runisdt”

time at that point (i.e., the
velocity at that point). tangent to

By definition, that slope curve at t,
equals the derivative of

t

time (t)

1

FIGURE 4.3
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the position function (dx/dt) evaluated at ¢ .

b.) Bottom line on POSITION vs. TIME graphs: To get the instan-
taneous velocity of a body whose POSITION vs. TIME graph is given but
whose position x(?) is not explicitly known, draw a tangent to the curve at
the time of interest, then determine the slope of that tangent. The slope
will numerically equal the velocity of the body at that point in time.

4.) Displacement and the VELOCITY vs. TIME Graph:

a.) As you probably learned in math class, the area under a Velocity
vs. Time graph equals the net displacement of a body over the time inter-
val in question (see Figure 4.4).

b.) In
general, if
we are given velocity
a velocity (m/s) the total area under the curve

4 between t=23 and t=30 seconds

curve is ZERO (an area under the axis
without an --i.e., between the curve and the

o / i axis, but in the negative region
explicit is considered negative)

function for
the velocity

(i.e., U(t)), time (sec)
we can find
the distance ) \ - v(t) = (.3t + 8) m/s
the area under the curve for the straight-
traveled yields the net displacement line section
(i.e., Ax) by during the time interval
. (between t=7 and t=16 seconds,
eyebalhng this is eyeballed at 25 to 27 meters)
the area
under the :
the time in-
terval.

Note 1: Velocities under the axis (i.e., in the negative region) denote mo-
tion in the negative direction. That means a displacement associated with an
area found under the axis is associated with negative displacement.

Note 2: If you know the velocity function v(?) for a given situation, the

area under the curve (i.e., Ax) can be determined by integrating the velocity
function over the time interval (i.e., by executing [(v)dt). This, again, is a
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Calculus problem. You won't have to do this on a test, but you do need to
understand the principle.

d.) Example from the graph: What is the displacement of the body
between times ¢t = 23 seconds and t = 30 seconds?

e.) Answer: The body's velocity between ¢t = 23 seconds and t = 26.5
seconds 1s 1n the positive x direction. Its displacement is positive and
equal to the area under the curve between those two points in time. The
body's velocity between ¢t = 26.5 seconds and t = 30 seconds is in the
negative x direction. Its displacement is negative and equal to the area
under the curve (i.e., the area between the curve and the axis) between
those two points in time. Due to the symmetry of the situation, the two
areas are equal, so adding them yields a net displacement of zero. In
other words, the body moves in the positive x direction for a time, then
backtracks in the negative x direction long enough to end up back where it
was at the beginning of the interval.

C.) Acceleration—Magnitude and Direction:

1.) Average acceleration (aavg): A vector quantity that denotes the av-
erage change-of-velocity per unit time over some large time interval. Its units

are meters per second per second (usually written as m/s®--see Note #2 below),
and its mathematical definition is:

where A v is the net change of velocity during a time interval At.

The direction of @ og 1s the same as that of Awv.

Note 1: Although it may not be obvious now, the sign of an acceleration
value tells us information that is not immediately obvious. Explanation later!

Note 2: (concerning acceleration's units): The fraction (1/3)/3 can be re-
(1/3)
(3/1)

over and multiplying, we get (1/3)(1/3), or 1/32. By the same token, as

written as . Bringing the denominator up into the numerator by flipping it
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acceleration measures the rate at which velocity changes per unit time, its units
are the ratio (m/s)/s. Being analogous to (1/3)/3, this can be written as m/s?.

a.) Example: A man has

velocity v, = (3 m/s)i when at X7
direction of motion

Three seconds later, he is at Xg S

moving with velocity v, = (9

X

m/s)i (see Figure 4.5). What is 2

. . v =3 m/s lv.] =9 m/s
his average acceleration? ! 2

A, = AV At FIGURE 4.5
=(vy-vy/ (At)
= (9 m/s - 3 m/s)i/ (3 sec)
= (2 i) m/sZ.

2.) Instantaneous acceleration (a): A measure of an object's change of
velocity per unit time at a particular point in time.

a.) Mathematically, instantaneous acceleration (referred to as ac-
celeration from here on) 1s defined as:

a=limit,_, (Av/,).

where the direction of A v is the direction of the net force acting on the
body at a given instant.

b.) As thisis the
definition of a derivative,

we can write: Velc()c)ity
\
slope of the
dv tangent at time
=—. t, is equal to
dt dv/dt (i.e., the

acceleration
at t) rise is "dv"

3.) Acceleration and the
VELOCITY vs. TIME Graph:

\_// run is "dt"
a.) Consider the /

VELOCITY vs. TIME t time (t)
graph shown in Figure 4.6 tangent to
to the right. The slope of !

FIGURE 4.6
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the tangent to the curve at time ¢, is the change of velocity with time at

that point (i.e., the acceleration at that point). By definition, that slope
equals the derivative of the velocity function (dv/dt), evaluated at ¢ 7

b.) Bottom line on VELOCITY vs. TIME graphs: To get the instan-
taneous acceleration of a body whose VELOCITY vs. TIME graph is given
but whose velocity function v(?) is not explicitly known, draw a tangent to
the curve at the time of interest, then determine the slope of that tangent.
The slope will be numerically equal to the acceleration of the body at
that point in time.

Note: If we have an ACCELERATION vs. TIME graph, the area under
the graph between times ¢, and ¢, equals the velocity change during that time

interval, and the slope of the tangent to the graph defines the rate of change of
acceleration with time. This latter quantity is called the jerk of the motion
(tough to believe, but true).

D.) Sign Significance for VELOCITY and ACCELERATION:

1.) Sign of the VELOCITY vector:

a.) It has already been noted that the direction of the velocity vector
1s the same as the direction of motion. A quick example follows:

b.) Consider an object moving
along the x axis. It is initially found
atx, = 3 meters; three seconds later it direction of motion

1s found at x 4 = -7 meters (see Figure B ——

4.7). Wbat 1s the average velocity of = 7m < =3m
the motion? 4

At =3 sec
Solution:

v = Ar/ At FIGURE 4.7
avg

= Ax/ At

= (x4 - X3)i/ At

= [(-7 m) - (+3 m)]i /(3 sec)
=(-3.33 1) m/s.

Note: Negative signs matter when dealing with position variables.
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c.) When the body is moving in the -x direction, the direction of the
velocity vector is, indeed, in the -i direction.

Note: Even though -30 is smaller than +2 on a number line, the sign of a
velocity has nothing to do with magnitude (i.e., how fast you are going)--all it
tells you is which way you are going. (To see this: which would you prefer-- to be
hit by a car moving with a velocity of +2 m/s or -30 m/s?)

2.) Sign of the ACCELERATION vector:

Note: Warning! You are about to find that the information wrapped up
in the sign of an acceleration quantity is considerably more complicated than
the information wrapped up in the sign of a velocity quantity.

a.) A woman finds she is mov-
ing in the +x direction with velocity
v, =3 m/s. Three seconds later,

direction of motion

she 1s moving with velocity v, = 9
mls (see Figure 4.8). What is her X,
average acceleration? lv| =3m/s lv,| =9 mls

Note: Because we are working in

one dimension only, we will not bother FIGURE 4.8
carrying the unit vector i along in the cal-
culation.

CH Av/ At

= (Vsec pt - Vﬁrst pt) / (At )
= (9 m/s - 3 m/s)/(3 sec)

=42 m/s2.

Observation 1: An individual speeding up while moving in the +x di-
rection has a POSITIVE acceleration.

b.) In Figure 4.9, a woman finds

she is moving in the +x direction with direction of motion
velocity v, = 9 m/s. Three seconds _—

later, she 1s moving with velocity v, )'(4

=3 m/s. What is her average ac- lv | =9mls Iv | =3mls
celeration? ’ !

FIGURE 4.9

87



Ayig = Av/ At
=(V4-V3)/(At)
(3 m/s - 9 m/s)/(3 sec)

=.2 m/s2.

Observation 2: An individual slowing down while moving in the +x di-
rection has a NEGATIVE acceleration.

Note: The combination of Observations 1 and 2 normally leads people to
believe that speeding up is associated with positive acceleration (often referred
to simply as acceleration) and slowing down is associated with negative
acceleration (often called deceleration). THIS IS NOT ALWAYS THE CASE, as

will be shown below.

c.) A woman moves in the -x direction with velocity v, = 3 m/s. Three
seconds later, she is found to be moving at velocity v, =9 m/s. What is

her average acceleration?
Note: THERE IS SOMETHING RADICALLY WRONG WITH THE
STATEMENT OF THIS PROBLEM. Can you find the error?

The problem should be stated: A

woman finds she is moving in the -x direction of motion

direction with velocity v 5=3 mls. Three .
seconds later, she is found to be moving at | ; ;
velocity v, = -9 m/s (see Figure 4.10). ‘ %6 %5

Ve = -9 m/s V.= -3 m/s

What is her average acceleration?

Note: The "RADICAL PROBLEM" al-
luded to above has to do with signs. BE
CAREFUL WITH YOUR SIGNS; YOU WILL
RARELY IF EVER WORK WITH TRUE, SIGNLESS MAGNITUDES. The sign
of the velocity of an object moving in the -x direction is negative!

FIGURE 4.10

Solving the problem:

Ayig = Av/ At

= (V6 - V5) /(At)
[(-9 m/s) - (-3 m/s)]/(3 sec)
= .2 m/s?.
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Observation 3: Here we have a NEGATIVE ACCELERATION, but the
woman isn't slowing down--she's speeding up.
Likewise, if the woman is moving in the -x direction with velocity v,=-9

mls and, three seconds later, finds herself moving at v g=3 mls, her acceleration

will be calculated as +2 m/s2. This is a POSITIVE acceleration associated with
a slow-down.

d.) Bottom line:
i.) For +x motion (i.e., positive velocity):

+ avg. acc. = increase of speed
- avg. acc. = decrease of speed.

ii.) For -x motion (i.e., negative velocity)

+ avg. acc. = decrease of speed
- avg. acc. = increase of speed.

e.) Conclusion? When an object's velocity and acceleration have the
same sign (i.e., are in the same direction), the body will physically speed
up. When an object's velocity and acceleration have different signs, the
body will slow down.

i.) In a way, this makes perfect sense. Acceleration comes only
when a net force is applied
el
portional to one another).
A positive force (i.e., a net
force directed in the positive
direction) produces positive
acceleration no matter
what the velocity is. By the
same token, negative force
always produces negative
acceleration.

direction of motion
(a negative velocity) positive force
- (i.e., positive
acceleration)
—

body slows down

T

direction of motion

/%4
a negative velocity) negative force %
.
.
.
|

ii.) In other words, in

S
.
i
\
-
-
-
\
-

Figure 4.11a where a body < gcielgfagggnv)e
moving in the -x direction -
has a positive force applied

2

ﬁ body speeds up

%/ﬁ



to it, we would expect the body to slow down. This is exactly what a
POSITIVE ACCELERATION does. Likewise, you would expect the
body to speed up if a negative force, hence negative acceleration, were
applied (see Figure 4.11Db).

iii.) Bottom line: In both cases, our "like-directions-cause-speed-
up, unlike-directions-cause-slow-down" observation is reasonable.

E.) The Kinematic Equations:

1.) To this point, we have dealt with general position, velocity, and ac-

celeration functions. A special case occurs when a body is constrained to move
with a CONSTANT acceleration.

Note: There are many constant-acceleration systems within nature. As

an example: The gravitational freefall of an object near the earth's surface.

2.) With a constant acceleration, there are a number of equations that

can be written that make problem-solving much easier. Collectively, these
relationships are called the kinematic equations. They are summarized below
for one dimensional motion with explanations and derivations to follow:

90

a) x, =x, +v, At + (1/2)a(At)™:

i.) This states that after a time period (A ¢) of constant accelera-
tion a, an object's coordinate position x, equals:

ii.) Its initial position x; (1.e., its position at the beginning of the

time interval--this initial time is usually called ¢,), plus;

iii.) The change of position v, At due to the fact that the body has

an initial velocity (i.e., v,) at the beginning of the time interval, plus;

iv.) The additional position change (1/2)a(A t)2 that occurs due to
the body's acceleration.

b.) vy =V, taAt:

i.) This states that a body's velocity v P after an interval At of

constant acceleration a equals:
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ii.) The body's velocity v; (i.e., its velocity at the beginning of the
period), plus;

iii.) The increase or decrease of velocity a A t due to the body's
acceleration.

c.) (\72)2 = (Vl)2 +2a(xg - X):

i.) This states that the square of a body's velocity at time ¢, (i.e.,
v 2) after an interval of constant acceleration a equals:

ii.) The square of the body's velocity v ;at the beginning of the
time interval (i.e., at ¢ 1), plus;

iii.) 2 times the acceleration (a) times the change of position A x.
d) x,=x; + VanAtZ

i.) This states that an object's coordinate position x, after a
period (A ¢) of motion during which the average velocity has been v <
equals:

ii.) The body's initial position x; (i.e., its position at the start of

the time interval at time ¢,), plus;

iii.) The additional displacement U gA t due to the body's motion

during the time interval.

e.) Vavg = (v, +vy)/2:

i.) Assuming the velocity function is linear (i.e., the acceleration
1s a constant), the average velocity Vavg between times ¢; and ¢, will

simply equal the sum of the end velocities (v ; blus vy) divided by two.

2.) Why do we want these equations? There are times when we know,
say, a body's final velocity, acceleration, and time of acceleration, and would like
to know its initial velocity. We could use Calculus on the problem, but why go
through all the bother when we have a kinematic equation (v ,=v;tad t) that

has all the variables we know along with the variable we are trying to de-
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termine? In other words, there are circumstances when we can short-cut the
Calculus by simply using the CONSTANT ACCELERATION equations that
follow from the calculus (you'll see how they follow shortly).

Note concerning the following material: The following derivations
are provided so that you will have some clue as to what the variables in the
kinematic equations stand for and why they relate to one another as they do.
You will be expected to understand the concepts outlined below, but you will not
be asked to reproduce the derivations. In other words, skim this material.

3.) Derivation of v, =v, +aAt:

a.) Assume a body moves in one-dimensional motion under the in-
fluence of a constant acceleration a (as this is a one-dimensional sit-
uation, we will drop the unit vector notation). Additionally, assume that:

i.) At some initial point in time ¢ ;» the body is positioned at x,

and 1s found to be moving with velocity v ;and

ii.) Later, at some arbitrary time Lo the body 1is positioned at Xo

and 1s found to be moving with velocity v >

b.) We know the average acceleration is the slope of the velocity versus
time graph. In general, this can be written as:

B AV
At

avg

c.) If the acceleration is constant, though, the average acceleration
between any two points and the instantaneous acceleration at a given
point will be the same number. In other words, for a constant acceleration
situation, we can write

from which we get v, =v, +aAt:
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Note: It is not unusual to find this expression written in physics books
as v, =v; +at, where the At has mysteriously become, simply, . This bit of

magic 1s justified as follows:
If the clock begins at ¢ ; = 0 and proceeds to some arbitrary time ¢, = ¢, the

change in timeis At =(t,-t,)=(t - 0) =t. When this is incorporated into our
equation, v, =v; +a At becomes v, =v, +at.

Observation: This is very sloppy notation, using what looks like a
particular point in time t in place of the time interval that belongs in the

equation. Nevertheless, that is the way most physics books write it.
The moral? Be aware of what symbols mean so as not to be led astray.

4.) Derivation of x,=x, + v, At +(1/2)a(A t)2:

a.) Remembering
that the t variable is
really a A, noting : the area under the graph

that x, - x,1s Ax, and velocity is fx = VlAH(l/z)a(M)
2 71 ’ (m/s)

noting that v,-v, =
oung tha U2 vl at the area under triangle

from one of the
previous kinematic
relationships, this

equatl'on has an. mn- % . _— area under rectangle
teresting graphical %ﬁ equals v At
link. Knowing that the e T T e

area under a (sec)
VELOCITY vs. TIME
graph is related to the
distance traveled Ax
during a given time in-
terval, we can determine A x using the geometry of the constant accelera-
tion polygon shown in Figure 4.12. Doing so yields

vV, tV,
AX=v, t+ 5 t

X, = v1t+(}/2)(at t

= X,=X, +v1t+(%)at2.

J(1/2) (V -v ) At = (1/2)a(At)

FIGURE 4.12
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5.) Derivation of the expression Vavg = (v, tvy)/2:

a.) Looking at the
graph in Figure 4.13, it
can be seen that if the velocity
acceleration is constant (m/s)
(i.e., the velocity i1s a v,
linear function), the
average velocity of the

Vavg = (V1+V2)/ 2

body over a time interval Y1
At defined by the 1
expression At =t,-{;1s

FIGURE 4.13
where v 7 and v g are the

initial and final velocities over the interval. This expression is very
rarely used but will be useful in a derivation that follows.

6.) Derivation of Ax = U gA t:

a.) This is the old, "distance equals rate times time" equation you
learned in the sixth grade with the distance term expressed as Ax and the
rate term expressed as Uavg: Written in this notation, we get:

AX=vV VgAt.

a

Note: Asis the case with all expressions having Vavg in them, this

equation is very rarely used in the context of problem-solving.

7.) Derivation of v,” =v 12 +2a Ax:

a.) We can eliminate v g from x,=x, +v_ gA tusing v, g™

(vytv,)/2. Doing so yields:
2 71
Xg =X+ [(V2+V1)/2]At.

b.) Using v, -v; =aAt, we can solve for A¢, finding:
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At = (v, - vy)/a.
c.) Putting the equations from Parts a and b together, we get:
Xy - X1 = [(Vo+v))/2][(v, - vy)/a].
d.) Putting Xg - x; =Ax and manipulating, we can reduce this to:

2_.2
VoS =V, + 2aAx.

8.) A re-statement of the kinematic equations is presented below:

(X5 - X)) =V At + (1/2)a(At)2 (used often)
a= (V2 - Vl)/At or v,=v,+taAt (used often)
(V) = (v)* + 2a(x, - x,) (used often)
(x2 - Xl) = VanAt Or Vo™ (x2 - Xl)/ At (rarely used)
Vavg = (Vo +v,)/2 (rarely used).

Note 1: Be careful about signs. As an example, an object moving from x,
= -3 meters to x, = -5 meters does not have a displacement (i.e., Ax) of 2 meters.
Following the math, we get Ax =(x,-x,) =[(-5) - (-3)] = -2 meters.

Displacement is a vector; negative displacement means the body is

moving to the left. Signs matter! Be careful with them. (The same is true
whenever using velocity parameters in the equations!)

Note 2: Be sure your use of the kinematic equations is legitimate. If you
are not sure whether the acceleration is constant, don't use them.

F.) The Kinematic Equations—Some One-Liners:

1.) A Porsche whose initial velocity is 20 m/s accelerates at 5 m/s? for
three seconds. What is its velocity at the end of that time period?
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Solution: We know the initial velocity, the constant acceleration, and the
time interval over which the acceleration occurred. The equation that includes
the variables we know along with the variable we need is a = (v 9 U; )/ At.

Using it, we get:

a=(v2- vy )/ At,
or ) m/sz) = [vy - (20 m/s)] / (3 sec)
= v,=35 m/s.

2.) When our Porsche is 20 meters to the left of a stop sign (i.e., on the
negative side of an axis placed at the sign), it 1s moving with velocity of 30 m/s. If

it accelerates at a rate of -20 m/sZ, how fast will it be going when at x =-10 m?

Solution: We know the initial and final positions and velocities. The
relationship that will do it for us is (v,)® = (v,)* + 2a(x, - x,). Using it yields:

(V2)2 = (V1)2 +2 a [ x, - x; ]
(vy)? = (30 m)? + 2(-20 m/s%) [(-10 m) - (-20 m)]
= Ve = +22.36 m/s.

Note: This kinematic equation doesn't understand how your Porsche is
slowing down. One possibility is that you hit the brakes when at x = -20 meters
(i.e., 20 meters to the left of the origin) and slide with a positive velocity (i.e., a
velocity that moves to the right) through the x =-10 meters point. Another
possibility is that you put the Porsche into reverse while moving in the positive
direction and floor it. (This is a really dumb way to slow a car down, but it will do
the trick provided you don't blow your transmission in the process.) In that case,
you will slide through the x =-10 meters point on your way to a dead stop. The
difference is that the car will then begin to move backwards in the negative
direction passing through the x =-10 meters again but with a negative velocity.

The kinematic relationship you are using can't differentiate between any of
these scenarios, so it deals with the problem from a purely mathematical
standpoint and solves for the car's fwo potential velocities (one positive, one
negative) at the x = -10 meters point.

In short, it is up to you to recognize the physical constraints of the problem
and decide which sign is appropriate. Additionally, because there is no time

parameter in (02)2 = (v])2 + 2a(x2 - xl) ... hence no way to eliminate this

ambiguity . . . this is the only kinematic relationship that does not give you the
for sure correct sign as a part of the velocity term.
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3.) In problem 2 above, how long will it take our Porsche to go from x =
-20 meters to x =-10 meters?

Solution: Given the Note above, you'd expect two possible times to arise. The
relationships (x, - x;) =v, At +(1/2)a(A t)2 give us that. Using it yields:

[ & - x )= v, At+(1/2) a (At)?

[(-10 m) - (-20 m)] = (30 m/s) t + .5 (-20 m/s?) t
= t=.38 seconds and 2.62 seconds.

4.) A dragster capable of accelerating at 12 m/s? is given a running start at
the beginning of a 400 meter race (i.e., it is allowed an initial velocity v,). With

this initial velocity, it is able to make its run in 6 seconds. What was v,?

Solution: We know the acceleration, the distance traveled (x, - x,), and the

time of travel. To determine the initial velocity:

(x, -x)=v; At +(1/2) a (At)2
(400 m - 0) = v,(6 sec) + (1/2)(12 m/sz)(6 sec)2
= v1=30.7Tm/s.

5.) A dragster accelerates from rest to 110 m/s in 350 meters. What is
its acceleration?

Solution: We know the initial and final velocities and the distance traveled
(x4 -x,). To get the acceleration, we could use:

(vy)? = (v))? + 2a(x, -x,)

= a=[ ) -OPA/2(x, -x)]
= [(110 m/s)? - (0)?] / [2(350 m - 0) ]
=17.29 m/s>.

G.) One More One-Dimensional Kinematics Problem—Freefall:

1.) A ball is thrown downward with an initial velocity of -2 m/s. It takes
three seconds to hit the ground (see Figure 4.14). We want to determine: a.)
how high above the ground was the ball released, and b.) how fast was it
moving just before it hit the ground?
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Solution: We know the initial velocity, the time of

flight, and the acceleration (the acceleration of gravity att =0,
near the earth's surface is ALWAYS approximated as -g, y =7 and

1
or -9.8 m/sz): v.= 9 ms

a.) To determine y, -y

¥y-y)= v, At +(1/2) a (At)? oy BEE=D
(0 -y,) = (-2m/s)(3 sec) + (1/2)(-9.8 m/s?)(3 sec)? 7,20 and v,=?
= -50.1 meters (note: v is NOT zero
= y;= +50.1 meters. just before touch-down)

Note 1: Why +50.1 meters instead of -50.1
meters? Because we've placed our coordinate axis so
that ground level is y = 0. If we had put the axis where
the ball became free, our final position would have been y =-50.1 meters.

FIGURE 4.14

Note 2: Notice how helpful a sketch can be in visualizing a problem. Get
into the habit of using sketches whenever you can.

Note 3: A temptation might have been to use (02)2 = (v1)2 +2a(yy-y )

That would be a bad move as the velocity at ground level is unknown (no, it is not
zero--it is equal to the velocity just before touchdown).

b.) To determine v, With the information we now have, we could

determine the velocity just before touchdown in either of two ways:

The first way: (V2)2 = (Vl)2 +2 a (yo - ¥1)
= (-2 m/s)? + 2(-9.8 m/s?)(0 m - 50.1 m)
= 986 m?/s2.

= Vy = 31.4 m/s.

Note 1: As the velocity quantities are squared in this equation, all neg-
ative signs are lost in the math and the calculated value of v o will be a magni-

tude only. As the velocity is actually directed downward, v, as a vector should
be written (31.4 m/s)(-j), or (-31.4 m/s)(j).

Note 2: It is important to notice that the particular kinematic equation
used above will always yield VELOCITY MAGNITUDES ONLY.
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The second way: Vo= v, o+ a At
= (-2 m/s) + (-9.8 m/s%)(3 sec)
=-31.4 m/s.

Note 3: As this particular kinematic equation does not square its veloc-
ity terms, it yields both magnitude and appropriate sign. As a vector, the final
solution for v, using this approach is (-31.4 m/s)(j).

H.) Kinematics in Two Dimensions--Projectile Motion:

1.) Background: The net acceleration of a body moving in two dimen-

sions can be written as @ =a i +a yi, where the acceleration components a, and

a,, may or may not be the same but are assumed to be constants. A general

expression for the body's instantaneous velocity can be written v = vxi +v yi, and
a vector defining the body's position can be expressed as r = xi + yj.

Having formally defined these quantities, common sense tells us that a
net force F_in the x direction (hence an acceleration in the x direction) will only

affect a body's motion in the x direction. As F_ will not affect the body's motion

in the y direction, x and y-type motion must be independent of one another and
must, consequently, be treated as separate entities.

2.) With the obser-
vation made above, con-
sider a cannon positioned
as shown in Figure 4.15.

Its muzzle is oriented at a
known angle 8 = 30° above v, =100 m/s
30° \

the horizontal, and its 80 meters

muzzle velocity is known to 9 meters g
be v, =100 m/s (the muzzle e

flight path

velocity denotes the magni-
tude of the projectile's ve-
locity as it leaves the can-
non). If the cannonball be- FIGURE 4.15
comes free at a known

height y ; =2 meters, and if it lands on a plateau whose height is y o = 80 meters,

NOT TO SCALE

determine:

2a.) The time of flight At;
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2b.) The final horizontal position Xg of the ball at touchdown;
2¢.) The velocity v top of the cannonball at the top of its flight;
2d.) The cannonball's maximum height y top’ and

2e.) The velocity v, of the cannonball just before its touch-down on

the plateau.

3.) Solutions:

a.) Preliminary TIME OF

FLIGHT note: Let's assume you observer's position
down-range

have been sent to a point down-
range of the cannon (see Figure
4.16a for your positioning). You
have been provided with a special
flight-sensing-scope that allows
you to watch the cannonball's mo-
tion as it comes out of the cannon NOT TO SCALE
and proceeds on its path (you are
obviously far enough away so you FIGURE 4.16a
won't get hit by the projectile when

it comes down). Additionally, let's assume that the device ruins your
depth-perception (that is, you can see the ball but you don't get the feel-

ing that it 1s coming toward you). From your perspective, how will the

cannonball's motion look?

Reflection suggests that the
cannonball will appear to rise straight
upward, reach some maximum height,
stop for a moment, then proceed back

. apparent path of cannonball
down toward the ground (see Figure from observer's perspective
4.16b). Further consideration suggests
the ball's initial velocity will equal the y
component of the ball's muzzle velocity
(v; sin@ =100 sin 30 = 50 mls).

From a different perspective, the
cannonball's motion will exactly mimic
that of a basketball thrown from y=2

FIGURE 4.16b




Chapter 4--Kinematics

meters directly upward with velocity
50 m/s released just as the
cannonball leaves the muzzle (see

path of basketball with

Figure 4.16c¢). initial velocity of 50 m/s

We know how to use our kine-
matic equations to analyze the one-
dimensional motion of a basketball ! i _ apparent path of cannonball
thrown directly upward; we can use 2 & from observer's perspective
those same equations to determine >
the time-of-flight At required for ei-
ther the basketball or the
cannonball.

FIGURE 4.16¢

Specifically:
i.) Both balls begin at y ; = 2 meters;

ii.) Both balls rise, then fall back to y o = 80 meters;

iii.) The initial velocity upward is v, y =Yy sin® = (100 m)(sin 30°)
=+50 m/s; and

iv.) The touchdown velocity is v P Z

v.) Acceleration in the y direction is due to gravity, or a,=-g=
-(9.8 m/s2); and

vi.) The time of flightis At=2¢

b.) To determine Question 2a--Time of

Flight: The kinematic equation that will atytzg’meters_ at t=2,
allow us to solve for the time-of-flight A¢, ! and 3,80 meters;
given the initial and final y positions, the y iy 20 bow=7mis

acceleration, and initial y velocity (see

0

Figure 4.17), is: g

Vo-yP= vy, At+12)a, (At)?
(V- ¥y = (v, sin@) At + (1/2)(-g)(At)* FIGURE 4.17

— (80 m - 2m) = (100 m/s)(sin 30°) At + .5(-9.8 m/s2)(At)2.
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Replacing At with ¢ for simplicity, we get:
4.9t - 50t +78 = 0.

Using the quadratic formula (the solution for ¢ in at? +bt+c=0ist = [-b
+ (b2 - 4ac)]/2]/ 2a...) we get

t = {-(-50) + [ (-50)2 - 4 (4.9) (78) |21/ 2 (4.9)
= 1.92 and 8.28 seconds.

Note: There is nothing wrong with the fact that the quadratic equations

yields two solutions to this problem. The ball will be at height y, = 80 meters

twice--once as it moves upward toward its maximum height and once on its way
back down. We're interested in the time it takes to come back down to y, = 80

meters, so we will take the larger time of 8.28 seconds.
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c.) Preliminary note to DISTANCE TRAVELED problem: Let us
assume you have been placed in a helicopter and stationed high above
the cannon range looking down over it. Again, you have the special flight-
sensing-scope, and again you have no depth-perception when using it.
From this new perspective, how will the cannonball’s motion look
(assuming you can ignore parallax problems)?

In this case, it will appear to be moving along a straight line in the x
direction, and it will appear to be moving with a constant velocity. This
makes sense. There are no forces acting in the horizontal which means
there will be nothing to accelerate the body in the x direction (we are
assuming there is no air-friction or wind in the system). The
cannonball's velocity in the x direction will always be the x component of
the muzzle velocity (v,cos 6 =100 cos 30 = 86.6 m/s). In fact, the

cannonball's motion will exactly mimic that of a car driving at a constant
velocity of 86.6 m/s along the side of the range. Using our kinematic
equations for the projectile's x-fype motion, we know that

i) x, =0
ii.) x,=7

iii.) The initial velocity will be the x component of the muzzle ve-
locity, or v, . = v, cos8 = (100 m)(cos 30) = +86.6 m/s; and
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iv.) Vg, =V; =86.6m/s (1.e., x velocity doesn't change)
v.) The x direction acceleration will be a,=0.

vi.) The time of flight (from Part a) will be t = 8.28 seconds.

d.) To determine Question 2b--Horizontal Displacement: The
kinematic equation we will use is the same one used in the first ques-
tion, but evaluated for x-type motion instead of y-type motion:

xy-x)= v, At+(1/2)a (At)?

(x5 - %) = (v co’se)At + (1/2)aX(A1:)2
= (x,-0)=(86.6 m/s)At +.5 (0)(At)*

=  X,=(86.6m/s) At

= X, = (86.6 m/s)(8.28 sec)

=717 meters.

Note: How would the approach have differed if the first and second
questions had been switched?

The equation (x, - x,) = v, LAt (1/ 2)ax( A t)2 would still have worked for
the x motion, yielding x, = v, cos @ At, but the time of flight A¢ would have been

unknown. To get A, the equation (y,-y;) =v, yA t+(1 /2)ay(A t)? would have

had to have been evaluated for the body's y-motion. In other words, you would
have used the same equations, but you would have written them down in the
opposite order.

e.) To determine Question 2c--

Velocity at Maximum Height (see

Figure 4.18): In general, all veloci- Vigp (%) 1+ 0]
ties have components that can be
written as v = v i+v y] At the top

of the flight-path, Vsop =V i+

x,top
Uy top)” %
We know that at the cannon- O

ball's peak:

NOT TO SCALE

i.) The ball will have no
vertical motion at all (that is what FIGURE 4.18
1t means to be at the top of the
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path). Conclusion: v 0.

y,top

ii.) The cannonball's horizontal (x-type) velocity will be as always,

hence vx’t0p= 86.6 m/s.

iii.) Putting it all together, Vsop = (86.6 m/s)i + 0j.

f.) Solution to Question 2d--Maximum Height: The cannonball's
distance above the ground (its height) is related solely to its y-type mo-

tion. We have already noticed that Uy top = 0 (i.e., the ball stops in the
vertical when it reaches the top of its flight). That, coupled with the fact
that we know that a,=-g= -9.8 mls® and Uy = +50 m/s, allows us to use

(v o p)2 =(v 1 y)2+ 2ay(ymax- Y ) to solve for Y s Doing so yields:

.t

Vorop) = (1% +2 as (e ¥p)
02  =((50m/s)2+2(-9.8m/s?) (v -2 m)

=y = 129.6 meters.

max

max

g.) Solution to
Question 2e--Velocity
Just Before Touch-
M; The Velocity of 7
the cannonball just v, = 3116 m/s |
before touchdown will o
have a form v =v,, i + 5 '
Uy y] (see Figure 4.19). 0

vy = 86.6 m/s

From all we've said to
this point: NOT TO SCALE

i.) It should be
obvious that Fhe x FIGURE 4.19
component will be -
the same as always--86.6 m/s.

ii.) The y component of the velocity will require the use of the
equation (v2’y) = (vl,y) +2 a, (v4 - ¥ ) evaluated for y motion be-
tween y, = 2 meters and y, = 80 meters. Doing so yields:
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2 _ 2
(VZ,y) - (Vl,y) + 2 ay ( YQ - yl)
= (50 m/s)? + 2 (-9.8 m/s2) (80 m - 2 m)
= 971.2 m?/s?

= v, =31.16 m/s.
y

’

iii.) Conclusion: v, =(86.6 m/s)i +(-31.16 m/s)j.

Note: The equation used to determine v 2 yields velocity magnitudes

only. You have to put the negative sign in manually after noticing that the y mo-
tion should be downward at the point of interest (see Figure 2.31).

4.) Bottom line on two-dimensional motion:

a.) Treat each direction as an entity with its own set of kinematic
equations;

b.) When asked for "distance traveled in the x direction," think
(xy - X)) =V, At +(1/2)a (At)?

with a, =0. Use this in conjunction with the same equation evaluated in

the y direction. The time variable will allow you to link the two equations
(it takes the same amount of time to go the horizontal distance as it does
to go up, then down to the final vertical position).

c.) When asked to determine maximum height, think vertical
motion and the equation

(Vg )* = (v P +28 (Vo - vy
with the Y s velocity (i.e., v 2}y) equal to zero.

d.) Be careful not to confuse x-type acceleration with y-type accel-
eration, especially for freefall problems (one is ZERO while the other is -g).
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QUESTIONS

4.1) Without using a formal presentation of formulas, determine the following
1n your head:
a.) The units you get when you multiply velocity and time.
b.) The distance an object travels in 8 seconds when moving with a velocity
magnitude of 6 m/s.
c.) The units you get when you multiply acceleration and time.
d.) The velocity an object will pick up in 7 seconds when moving under an
acceleration magnitude of 5 m/s?, assuming the velocity and
acceleration are in the same direction.

4.2) True or False: An object that negatively accelerates slows down.

4.3) Think about a two dimensional projectile situation
(someone throws a baseball in from the outfield). Once the
ball has become free, and ignoring friction:
a.) Is there a point in the flight where the acceleration
1s perpendicular to the velocity? Explain.
b.) Is there a point in the flight where the velocity is
zero but the acceleration is non-zero? Explain.
c.) Is there a point in the flight where a component of the flight's motion
has zero velocity with a non-zero acceleration? Explain.
d.) Isthere a point in the flight where a component of the flight's motion
has non-zero velocity with zero acceleration? Explain.
e.) Is there more than one point that fits the description outlined in Part d?
Explain.
f.) Is there anywhere in the flight where the ratio of the acceleration in the
x direction to the acceleration in the y direction is zero? Explain.

4.4) Rock A is thrown vertically downward from a rooftop. Rock

B is thrown vertically upward. Rock C is thrown at an angle ﬁ
relative to the horizontal. Rock D drops from rest. All four are - PeeeD (at res)
released from the same spot with those initially moving having ~ Puilding ¢

. . A,B,andC's
the same velocity magnitude U, Assume we can neglect initial speeds
friction. are the same

a.) Considering Rock A and Rock B, which of the following
quantities is the same for both rocks? 1.) the time of
flight to the ground; ii.) the velocity just before hitting
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the ground; 1ii.) the magnitude of the velocity just before hitting the
ground; 1v.) the acceleration during the flight; v.) the net displacement;
v1.) the average speed to the ground; vii.) the average velocity to the
ground.

b.) Considering Rock B and Rock C, which of the following quantities is the
same for both situations? 1.) the time of flight to the ground; 1ii.) the
velocity just before hitting the ground; 1ii.) the magnitude of the
velocity just before hitting the ground; iv.) the acceleration during the
flight; v.) the net displacement; vi.) the average speed to the ground,;
vii.) the average velocity to the ground.

c.) What is common to the flight of Rock A and Rock D?

d.) If rock C's angle had been zero degrees (that is, if it had been thrown
horizontally), what would have been common to the flight of Rock C and
Rock D?

4.5) An object accelerates from rest at a constant rate a. In time ¢, it travels d
units. If the acceleration is doubled, how much time will it take to travel the
same distance d?

4.6) What's a jerk? (No, it's not the guy sitting next to you.)
4.7) The muzzle velocity of a gun is 100 m/s. A [ o OIS
bullet is fired horizontally from the gun when it is 2

meters off the ground. At the same time, a second bullet held next to the gun is
dropped from rest. It takes the dropped bullet .64 seconds to hit the ground.
Ignoring friction and assuming the terrain is flat, how far will the fired bullet
travel before hitting the ground? (This is almost all conceptual--use your head
a lot with only a little bit of math).

a v
4.8) A graph of the negative acceleration A

applied to two equal masses is shown.
Mass A moves in the +x direction while

t
mass B moves in the -x direction. m
a.) Are either of the velocity versus

time graphs shown associated with either particle? Explain.
b.) How would things change if the acceleration had been positive?

-3m/s?

4.9) A body moves along the x axis as depicted by the graph. X
a.) In what direction is the body moving at ¢ =-1 seconds?
b.) In what direction is it moving at ¢ = +1 seconds?

c.) Is this a constant velocity situation? Explain.

t = _1 j: \ t
d.) Is this a constant acceleration situation? Explain.
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4.10) The two graphs depict different characteris- Y X

tics of the motion of a mass. In what direction is Poi ntA?
the mass's velocity when at Point A? In what /_\
direction is the motion's acceleration?

| x
4.11) Make up a conceptually based graphical

question for a friend. Make it a real stinker, but give enough information so the
solution can be figured out (no fair giving an impossible problem).

4.12) There is a classic experiment in which a tape freefalls through a timer

that impresses a mark on the tape every 60" of a second (see sketch). As the
tape picks up speed, the marks become farther apart (note that the sketch is
not necessarily to scale). Assuming you can ignore friction:

a.) What is the ratio between the distance AB and the distance AD?

b.) You measure the total distance between the four dots and call it d.
What is the time duration over this interval? If you divide d by that
time, what kind of quantity will it give you (think about its units . . .)?

c.) At what point in the AC interval are the average velocity and
instantaneous velocity the same?

4.13) Two buildings stand side by side. The taller is 20 meters higher than the
shorter. Rocks are dropped from rest from both roofs at the same time. When
the rock from the taller building passes the top of the shorter building, the rock
from the shorter building will be (a.) 20 meters below its start point; (b.) less
than 20 meters below its start point; (c.) farther than 20 meters below its start
point.

4.14) A brick is thrown upward with velocity v,. Two bricks stuck together are

thrown upward with three times that velocity. If the first brick reaches a
maximum height of H, how high will the two bricks go?

4.15) An idiot drops a coke bottle out of the window of a Cesna aircraft flying in
the horizontal. Ignoring air friction, what will determine how long it takes for
the bottle to hit the ground? That is, what parameters (i.e., mass, height,
velocity, what?) would you need to calculate the time of freefall?

4.16) Two identical guns are fired from the same place at ground level on a
horizontal range. One is angled at 20° whereas the second is angled at 40°.
Ignoring friction:

a.) Which bullet would you expect to be in the air the longest?

b.) Which would go the farthest?
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c.) Which would go the highest?

d.) Which would be traveling the fastest as it hits the ground?

e.) Which would have experienced the greatest maximum acceleration
during the flight?

4.17) Answer all of question 16 assuming air friction exists.
4.18) As a projectile passes through its maximum height, little Mr. Know-It-
All says, "Right now, the dot product of the velocity and the acceleration is

zero." What do you think about that statement (aside from the possibility that
little Mr. Know-It-All needs to get a life)?
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PROBLEMS

Note: Don't get hung up on Question #4.20. Understanding how to think
about graphical information is important, but not as important as knowing the
basic definitions and learning how to use the kinematic equations.

4.19) A sprinter runs around a 440 meter circular track in 49 seconds.
a.) What is her average speed?
b.) What is her average velocity?
c.) Can you tell anything about her instantaneous velocity 5 seconds
after the start?

4.20) A student turns in the graph
shown in Figure I without bothering to label P
the vertical axis. The graph is related to the 1 — /
motion of a tricycle, but all you know for sure . \ .
1s that at t = 1 second the trike is moving N time
with an approximate velocity of -1 m/s. Is
the graph a position versus time graph, a ve- 2
locity versus time graph, or an acceleration
versus time graph? Explain briefly. FIGURE |

4.21) Figure Il 1s a velocity versus
time graph for the motion of an ant V?r'\‘q’/csi)ty
moving in one dimension across the o N\
floor. Assuming you don't explicitly
know the velocity function: 1 A\
a.) What is the ant's ap- i +—

proximate displacement between 1 £ P i t"{;gc)
times t =.5 second and t = 3
seconds (eyeball it off the graph--
this is not a Calculus problem!)?

b.) What is the ant's average FIGURE 1T
velocity between times ¢ =.5 seconds
and ¢ = 3 seconds? (This is a bit off-the-wall, more of a definition/use-your-
head question; if you don't see it, don't spend a lot of time on it.)

c.) What is the ant's velocity at ¢t =.5 seconds? . . . at t = 3 seconds?

d.) What is the ant's acceleration at ¢ =.5 seconds? . . . at t = 3 seconds?
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e.) When is the ant moving in the +x direction?

f.) When is the ant standing still?

g.) When is the ant's acceleration approximately zero?
h.) When is the change of the ant's acceleration zero?

4.22) A body moves under the influence of a velocity function given as:
v(t) = (3k,t%i - 4k,tj) mis.

Assuming both & ] and & 2 have magnitudes of one and the appropriate units:
a.) What are the units of k; and k,?
b.) Determine the velocity of the body at ¢, = 2 seconds.

c.) You'd like to know how far the body went between time ¢ = 3
seconds and t = 5 seconds.

i.) Could you use kinematic equations evaluated in the x
direction and kinematic equations evaluated in the y direction to do
this? Explain.

ii.) On the assumption you think you can use kinematic
equations in the y direction, do so to solve the y part of the problem.

4.23) Bats at Carlsbad Caverns leave the cave at dusk in search of food. When
they return at dawn, they fly over the cliff face that supports the cave entrance, fold
their arms and legs, then plummet like rocks until a few meters above the floor of
the cave entrance where they spread out the skin membranes between their arms
and legs and pull out of the dive. Assuming they drop from a height of 100 meters
and do not open their leg/wings until they are 3 meters above the floor:

a.) Ignoring air friction, how fast (i.e., the magnitude of their velocity)
are they moving by the time they pull out of the freefall?

b.) If their vertical velocity essentially drops to zero as they move
from 3 meters to 1 meter above the floor (i.e., during the time period in
which they pull out of the freefall), what is their vertical "pull-out" ac-
celeration?

c.) How long does it take them to execute their pull-out?

4.24) A stunt-woman freefalls from rest. She is observed to be moving 25

m/s at a particular point in time (call her position at that point in time Point A).
a.) How far will she have fallen 2 seconds after passing Point A?
b.) How fast will she be moving 2 seconds after passing Point A?
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4.25) One car moving with a constant velocity of 18 m/s passes a second

car initially moving at 4 m/s. As it does, the second car begins to accelerate at a

rate of 6 m/s2.

a.) How long does it take the second car to catch the first car?

b.) How far do the cars travel during the time interval required for
the second car to catch the first car?

c.) What is the second car's velocity as it passes the first car?

d.) What is the second car's average velocity during the period re-
quired for it to pass the first car?

e.) How long will it take the second car to reach 100 m/s?

4.26) A falling rock takes .14 seconds to pass from the top to the bottom of

a 1.75 meter tall window in a multi-story building.

a.) What is the velocity of the rock when at the top of the window?

b.) Assuming the rock is given an initial downward velocity of 7 m/s
when released at the top of the building, what is the distance between
the top of the building to the bottom of the window?

c.) If the rock were not given an initial velocity of -7 m/s but instead
started from rest, how would its acceleration as it passed by the top of
the window have changed from the originally stated problem?

4.27) You are driving a car that can accelerate at 3 m/s? (it's a Nash

Rambler) and can brake at 3 m/s?. You approach an intersection that is 18
meters wide. The light turns yellow. It stays yellow for 1.2 seconds before
turning red. If you accelerate, you must make it through the intersection before
the light turns red to be safe. If you brake, you must stop before reaching the
cross-walk-restraining-line to be safe.

Tough as it may be to believe, there is a range of distances between

which you will neither be able to successfully accelerate nor brake and still be
safe. Assuming you are moving 40 m/s (about 80 mph--ouch), and assuming
your reaction time is zero (that is, you accelerate or brake just as the light turns
yellow), the following will allow you to determine that range.
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a.) Pedal to the metal, what is the farthest you can be from the
restraining line and still be able to accelerate through the intersection
before the light turns red?

b.) Braking like mad, what is the closest you can be to the
restraining line and still be able to come to a grinding halt before going
over the restraining line? (Note that the slide time does not have to be
1.2 seconds--you can still be sliding after the light turns red just as long
as you don't ultimately go over the restraining line.)



Chapter 4--Kinematics

c.) In conclusion, what are the you 're going to die no matter what
limits?

4.28) A 3-meter-tall elevator accelerates at a rate of 1.5 m/s? when it's
working properly. After a shaky start, it is found to be moving with a velocity of
3.4 m/s just as its floor passes a point (call this Point A) 4 meters above the
ground. As it passes this point, a bolt in the ceiling of the elevator comes loose
and freefalls to the elevator's floor.

a.) Determine the bolt's maximum height above the ground during
its freefall.

b.) How long did it take for the bolt to meet the floor?

c.) What was the bolt's net displacement during the freefall?

d.) What was the bolt's velocity just before striking the floor?

4.29) A batter strikes a baseball 1.3 meters above the plate. The ball
leaves the bat at an angle of 50° with a velocity of 41 m/s.
a.) How long will it take for the ball to touch down in the outfield?
b.) How far (horizontally) will the ball travel before touch down?
c.) How high will the ball travel during the flight?
d.) What will the ball's velocity be just before touch down?

4.30) A punter standing on his own 12 meter line (yes, it should be 12
yard line--humor me) of a football field kicks a football that leaves his foot .5
meters above the ground moving at 20 m/s at a 53° angle with the horizontal. A
back on the other team stands on his own 5 meter line. Assuming the back can
hit stride immediately, at what constant speed must he run if he is to catch the
ball when it is 1.5 meters above the ground?
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